Copied to
clipboard

G = C22×Q82D5order 320 = 26·5

Direct product of C22 and Q82D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×Q82D5, C10.9C25, D2010C23, C20.44C24, D10.4C24, Dic5.26C24, (C2×Q8)⋊37D10, (C4×D5)⋊6C23, Q86(C22×D5), (C5×Q8)⋊7C23, (C22×Q8)⋊11D5, C2.10(D5×C24), C4.44(C23×D5), (C22×D20)⋊23C2, (C2×D20)⋊62C22, (Q8×C10)⋊43C22, (C2×C20).565C23, (C2×C10).329C24, (C22×C4).391D10, C22.55(C23×D5), C23.350(C22×D5), (C22×C20).301C22, (C22×C10).436C23, (C2×Dic5).382C23, (C22×D5).257C23, (C23×D5).130C22, (C22×Dic5).291C22, C103(C2×C4○D4), (Q8×C2×C10)⋊10C2, C53(C22×C4○D4), (D5×C22×C4)⋊10C2, (C2×C4×D5)⋊60C22, (C2×C10)⋊19(C4○D4), (C2×C4).645(C22×D5), SmallGroup(320,1616)

Series: Derived Chief Lower central Upper central

C1C10 — C22×Q82D5
C1C5C10D10C22×D5C23×D5D5×C22×C4 — C22×Q82D5
C5C10 — C22×Q82D5
C1C23C22×Q8

Generators and relations for C22×Q82D5
 G = < a,b,c,d,e,f | a2=b2=c4=e5=f2=1, d2=c2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd-1=fcf=c-1, ce=ec, de=ed, df=fd, fef=e-1 >

Subgroups: 2718 in 890 conjugacy classes, 463 normal (10 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, Dic5, C20, D10, D10, C2×C10, C23×C4, C22×D4, C22×Q8, C2×C4○D4, C4×D5, D20, C2×Dic5, C2×C20, C5×Q8, C22×D5, C22×D5, C22×C10, C22×C4○D4, C2×C4×D5, C2×D20, Q82D5, C22×Dic5, C22×C20, Q8×C10, C23×D5, D5×C22×C4, C22×D20, C2×Q82D5, Q8×C2×C10, C22×Q82D5
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, C25, C22×D5, C22×C4○D4, Q82D5, C23×D5, C2×Q82D5, D5×C24, C22×Q82D5

Smallest permutation representation of C22×Q82D5
On 160 points
Generators in S160
(1 86)(2 87)(3 88)(4 89)(5 90)(6 81)(7 82)(8 83)(9 84)(10 85)(11 96)(12 97)(13 98)(14 99)(15 100)(16 91)(17 92)(18 93)(19 94)(20 95)(21 106)(22 107)(23 108)(24 109)(25 110)(26 101)(27 102)(28 103)(29 104)(30 105)(31 116)(32 117)(33 118)(34 119)(35 120)(36 111)(37 112)(38 113)(39 114)(40 115)(41 126)(42 127)(43 128)(44 129)(45 130)(46 121)(47 122)(48 123)(49 124)(50 125)(51 136)(52 137)(53 138)(54 139)(55 140)(56 131)(57 132)(58 133)(59 134)(60 135)(61 146)(62 147)(63 148)(64 149)(65 150)(66 141)(67 142)(68 143)(69 144)(70 145)(71 156)(72 157)(73 158)(74 159)(75 160)(76 151)(77 152)(78 153)(79 154)(80 155)
(1 46)(2 47)(3 48)(4 49)(5 50)(6 41)(7 42)(8 43)(9 44)(10 45)(11 56)(12 57)(13 58)(14 59)(15 60)(16 51)(17 52)(18 53)(19 54)(20 55)(21 66)(22 67)(23 68)(24 69)(25 70)(26 61)(27 62)(28 63)(29 64)(30 65)(31 76)(32 77)(33 78)(34 79)(35 80)(36 71)(37 72)(38 73)(39 74)(40 75)(81 126)(82 127)(83 128)(84 129)(85 130)(86 121)(87 122)(88 123)(89 124)(90 125)(91 136)(92 137)(93 138)(94 139)(95 140)(96 131)(97 132)(98 133)(99 134)(100 135)(101 146)(102 147)(103 148)(104 149)(105 150)(106 141)(107 142)(108 143)(109 144)(110 145)(111 156)(112 157)(113 158)(114 159)(115 160)(116 151)(117 152)(118 153)(119 154)(120 155)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)(81 96 86 91)(82 97 87 92)(83 98 88 93)(84 99 89 94)(85 100 90 95)(101 111 106 116)(102 112 107 117)(103 113 108 118)(104 114 109 119)(105 115 110 120)(121 136 126 131)(122 137 127 132)(123 138 128 133)(124 139 129 134)(125 140 130 135)(141 151 146 156)(142 152 147 157)(143 153 148 158)(144 154 149 159)(145 155 150 160)
(1 106 6 101)(2 107 7 102)(3 108 8 103)(4 109 9 104)(5 110 10 105)(11 116 16 111)(12 117 17 112)(13 118 18 113)(14 119 19 114)(15 120 20 115)(21 81 26 86)(22 82 27 87)(23 83 28 88)(24 84 29 89)(25 85 30 90)(31 91 36 96)(32 92 37 97)(33 93 38 98)(34 94 39 99)(35 95 40 100)(41 146 46 141)(42 147 47 142)(43 148 48 143)(44 149 49 144)(45 150 50 145)(51 156 56 151)(52 157 57 152)(53 158 58 153)(54 159 59 154)(55 160 60 155)(61 121 66 126)(62 122 67 127)(63 123 68 128)(64 124 69 129)(65 125 70 130)(71 131 76 136)(72 132 77 137)(73 133 78 138)(74 134 79 139)(75 135 80 140)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 85)(2 84)(3 83)(4 82)(5 81)(6 90)(7 89)(8 88)(9 87)(10 86)(11 100)(12 99)(13 98)(14 97)(15 96)(16 95)(17 94)(18 93)(19 92)(20 91)(21 105)(22 104)(23 103)(24 102)(25 101)(26 110)(27 109)(28 108)(29 107)(30 106)(31 120)(32 119)(33 118)(34 117)(35 116)(36 115)(37 114)(38 113)(39 112)(40 111)(41 125)(42 124)(43 123)(44 122)(45 121)(46 130)(47 129)(48 128)(49 127)(50 126)(51 140)(52 139)(53 138)(54 137)(55 136)(56 135)(57 134)(58 133)(59 132)(60 131)(61 145)(62 144)(63 143)(64 142)(65 141)(66 150)(67 149)(68 148)(69 147)(70 146)(71 160)(72 159)(73 158)(74 157)(75 156)(76 155)(77 154)(78 153)(79 152)(80 151)

G:=sub<Sym(160)| (1,86)(2,87)(3,88)(4,89)(5,90)(6,81)(7,82)(8,83)(9,84)(10,85)(11,96)(12,97)(13,98)(14,99)(15,100)(16,91)(17,92)(18,93)(19,94)(20,95)(21,106)(22,107)(23,108)(24,109)(25,110)(26,101)(27,102)(28,103)(29,104)(30,105)(31,116)(32,117)(33,118)(34,119)(35,120)(36,111)(37,112)(38,113)(39,114)(40,115)(41,126)(42,127)(43,128)(44,129)(45,130)(46,121)(47,122)(48,123)(49,124)(50,125)(51,136)(52,137)(53,138)(54,139)(55,140)(56,131)(57,132)(58,133)(59,134)(60,135)(61,146)(62,147)(63,148)(64,149)(65,150)(66,141)(67,142)(68,143)(69,144)(70,145)(71,156)(72,157)(73,158)(74,159)(75,160)(76,151)(77,152)(78,153)(79,154)(80,155), (1,46)(2,47)(3,48)(4,49)(5,50)(6,41)(7,42)(8,43)(9,44)(10,45)(11,56)(12,57)(13,58)(14,59)(15,60)(16,51)(17,52)(18,53)(19,54)(20,55)(21,66)(22,67)(23,68)(24,69)(25,70)(26,61)(27,62)(28,63)(29,64)(30,65)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75)(81,126)(82,127)(83,128)(84,129)(85,130)(86,121)(87,122)(88,123)(89,124)(90,125)(91,136)(92,137)(93,138)(94,139)(95,140)(96,131)(97,132)(98,133)(99,134)(100,135)(101,146)(102,147)(103,148)(104,149)(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)(112,157)(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)(120,155), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,96,86,91)(82,97,87,92)(83,98,88,93)(84,99,89,94)(85,100,90,95)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120)(121,136,126,131)(122,137,127,132)(123,138,128,133)(124,139,129,134)(125,140,130,135)(141,151,146,156)(142,152,147,157)(143,153,148,158)(144,154,149,159)(145,155,150,160), (1,106,6,101)(2,107,7,102)(3,108,8,103)(4,109,9,104)(5,110,10,105)(11,116,16,111)(12,117,17,112)(13,118,18,113)(14,119,19,114)(15,120,20,115)(21,81,26,86)(22,82,27,87)(23,83,28,88)(24,84,29,89)(25,85,30,90)(31,91,36,96)(32,92,37,97)(33,93,38,98)(34,94,39,99)(35,95,40,100)(41,146,46,141)(42,147,47,142)(43,148,48,143)(44,149,49,144)(45,150,50,145)(51,156,56,151)(52,157,57,152)(53,158,58,153)(54,159,59,154)(55,160,60,155)(61,121,66,126)(62,122,67,127)(63,123,68,128)(64,124,69,129)(65,125,70,130)(71,131,76,136)(72,132,77,137)(73,133,78,138)(74,134,79,139)(75,135,80,140), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,85)(2,84)(3,83)(4,82)(5,81)(6,90)(7,89)(8,88)(9,87)(10,86)(11,100)(12,99)(13,98)(14,97)(15,96)(16,95)(17,94)(18,93)(19,92)(20,91)(21,105)(22,104)(23,103)(24,102)(25,101)(26,110)(27,109)(28,108)(29,107)(30,106)(31,120)(32,119)(33,118)(34,117)(35,116)(36,115)(37,114)(38,113)(39,112)(40,111)(41,125)(42,124)(43,123)(44,122)(45,121)(46,130)(47,129)(48,128)(49,127)(50,126)(51,140)(52,139)(53,138)(54,137)(55,136)(56,135)(57,134)(58,133)(59,132)(60,131)(61,145)(62,144)(63,143)(64,142)(65,141)(66,150)(67,149)(68,148)(69,147)(70,146)(71,160)(72,159)(73,158)(74,157)(75,156)(76,155)(77,154)(78,153)(79,152)(80,151)>;

G:=Group( (1,86)(2,87)(3,88)(4,89)(5,90)(6,81)(7,82)(8,83)(9,84)(10,85)(11,96)(12,97)(13,98)(14,99)(15,100)(16,91)(17,92)(18,93)(19,94)(20,95)(21,106)(22,107)(23,108)(24,109)(25,110)(26,101)(27,102)(28,103)(29,104)(30,105)(31,116)(32,117)(33,118)(34,119)(35,120)(36,111)(37,112)(38,113)(39,114)(40,115)(41,126)(42,127)(43,128)(44,129)(45,130)(46,121)(47,122)(48,123)(49,124)(50,125)(51,136)(52,137)(53,138)(54,139)(55,140)(56,131)(57,132)(58,133)(59,134)(60,135)(61,146)(62,147)(63,148)(64,149)(65,150)(66,141)(67,142)(68,143)(69,144)(70,145)(71,156)(72,157)(73,158)(74,159)(75,160)(76,151)(77,152)(78,153)(79,154)(80,155), (1,46)(2,47)(3,48)(4,49)(5,50)(6,41)(7,42)(8,43)(9,44)(10,45)(11,56)(12,57)(13,58)(14,59)(15,60)(16,51)(17,52)(18,53)(19,54)(20,55)(21,66)(22,67)(23,68)(24,69)(25,70)(26,61)(27,62)(28,63)(29,64)(30,65)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75)(81,126)(82,127)(83,128)(84,129)(85,130)(86,121)(87,122)(88,123)(89,124)(90,125)(91,136)(92,137)(93,138)(94,139)(95,140)(96,131)(97,132)(98,133)(99,134)(100,135)(101,146)(102,147)(103,148)(104,149)(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)(112,157)(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)(120,155), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,96,86,91)(82,97,87,92)(83,98,88,93)(84,99,89,94)(85,100,90,95)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120)(121,136,126,131)(122,137,127,132)(123,138,128,133)(124,139,129,134)(125,140,130,135)(141,151,146,156)(142,152,147,157)(143,153,148,158)(144,154,149,159)(145,155,150,160), (1,106,6,101)(2,107,7,102)(3,108,8,103)(4,109,9,104)(5,110,10,105)(11,116,16,111)(12,117,17,112)(13,118,18,113)(14,119,19,114)(15,120,20,115)(21,81,26,86)(22,82,27,87)(23,83,28,88)(24,84,29,89)(25,85,30,90)(31,91,36,96)(32,92,37,97)(33,93,38,98)(34,94,39,99)(35,95,40,100)(41,146,46,141)(42,147,47,142)(43,148,48,143)(44,149,49,144)(45,150,50,145)(51,156,56,151)(52,157,57,152)(53,158,58,153)(54,159,59,154)(55,160,60,155)(61,121,66,126)(62,122,67,127)(63,123,68,128)(64,124,69,129)(65,125,70,130)(71,131,76,136)(72,132,77,137)(73,133,78,138)(74,134,79,139)(75,135,80,140), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,85)(2,84)(3,83)(4,82)(5,81)(6,90)(7,89)(8,88)(9,87)(10,86)(11,100)(12,99)(13,98)(14,97)(15,96)(16,95)(17,94)(18,93)(19,92)(20,91)(21,105)(22,104)(23,103)(24,102)(25,101)(26,110)(27,109)(28,108)(29,107)(30,106)(31,120)(32,119)(33,118)(34,117)(35,116)(36,115)(37,114)(38,113)(39,112)(40,111)(41,125)(42,124)(43,123)(44,122)(45,121)(46,130)(47,129)(48,128)(49,127)(50,126)(51,140)(52,139)(53,138)(54,137)(55,136)(56,135)(57,134)(58,133)(59,132)(60,131)(61,145)(62,144)(63,143)(64,142)(65,141)(66,150)(67,149)(68,148)(69,147)(70,146)(71,160)(72,159)(73,158)(74,157)(75,156)(76,155)(77,154)(78,153)(79,152)(80,151) );

G=PermutationGroup([[(1,86),(2,87),(3,88),(4,89),(5,90),(6,81),(7,82),(8,83),(9,84),(10,85),(11,96),(12,97),(13,98),(14,99),(15,100),(16,91),(17,92),(18,93),(19,94),(20,95),(21,106),(22,107),(23,108),(24,109),(25,110),(26,101),(27,102),(28,103),(29,104),(30,105),(31,116),(32,117),(33,118),(34,119),(35,120),(36,111),(37,112),(38,113),(39,114),(40,115),(41,126),(42,127),(43,128),(44,129),(45,130),(46,121),(47,122),(48,123),(49,124),(50,125),(51,136),(52,137),(53,138),(54,139),(55,140),(56,131),(57,132),(58,133),(59,134),(60,135),(61,146),(62,147),(63,148),(64,149),(65,150),(66,141),(67,142),(68,143),(69,144),(70,145),(71,156),(72,157),(73,158),(74,159),(75,160),(76,151),(77,152),(78,153),(79,154),(80,155)], [(1,46),(2,47),(3,48),(4,49),(5,50),(6,41),(7,42),(8,43),(9,44),(10,45),(11,56),(12,57),(13,58),(14,59),(15,60),(16,51),(17,52),(18,53),(19,54),(20,55),(21,66),(22,67),(23,68),(24,69),(25,70),(26,61),(27,62),(28,63),(29,64),(30,65),(31,76),(32,77),(33,78),(34,79),(35,80),(36,71),(37,72),(38,73),(39,74),(40,75),(81,126),(82,127),(83,128),(84,129),(85,130),(86,121),(87,122),(88,123),(89,124),(90,125),(91,136),(92,137),(93,138),(94,139),(95,140),(96,131),(97,132),(98,133),(99,134),(100,135),(101,146),(102,147),(103,148),(104,149),(105,150),(106,141),(107,142),(108,143),(109,144),(110,145),(111,156),(112,157),(113,158),(114,159),(115,160),(116,151),(117,152),(118,153),(119,154),(120,155)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80),(81,96,86,91),(82,97,87,92),(83,98,88,93),(84,99,89,94),(85,100,90,95),(101,111,106,116),(102,112,107,117),(103,113,108,118),(104,114,109,119),(105,115,110,120),(121,136,126,131),(122,137,127,132),(123,138,128,133),(124,139,129,134),(125,140,130,135),(141,151,146,156),(142,152,147,157),(143,153,148,158),(144,154,149,159),(145,155,150,160)], [(1,106,6,101),(2,107,7,102),(3,108,8,103),(4,109,9,104),(5,110,10,105),(11,116,16,111),(12,117,17,112),(13,118,18,113),(14,119,19,114),(15,120,20,115),(21,81,26,86),(22,82,27,87),(23,83,28,88),(24,84,29,89),(25,85,30,90),(31,91,36,96),(32,92,37,97),(33,93,38,98),(34,94,39,99),(35,95,40,100),(41,146,46,141),(42,147,47,142),(43,148,48,143),(44,149,49,144),(45,150,50,145),(51,156,56,151),(52,157,57,152),(53,158,58,153),(54,159,59,154),(55,160,60,155),(61,121,66,126),(62,122,67,127),(63,123,68,128),(64,124,69,129),(65,125,70,130),(71,131,76,136),(72,132,77,137),(73,133,78,138),(74,134,79,139),(75,135,80,140)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,85),(2,84),(3,83),(4,82),(5,81),(6,90),(7,89),(8,88),(9,87),(10,86),(11,100),(12,99),(13,98),(14,97),(15,96),(16,95),(17,94),(18,93),(19,92),(20,91),(21,105),(22,104),(23,103),(24,102),(25,101),(26,110),(27,109),(28,108),(29,107),(30,106),(31,120),(32,119),(33,118),(34,117),(35,116),(36,115),(37,114),(38,113),(39,112),(40,111),(41,125),(42,124),(43,123),(44,122),(45,121),(46,130),(47,129),(48,128),(49,127),(50,126),(51,140),(52,139),(53,138),(54,137),(55,136),(56,135),(57,134),(58,133),(59,132),(60,131),(61,145),(62,144),(63,143),(64,142),(65,141),(66,150),(67,149),(68,148),(69,147),(70,146),(71,160),(72,159),(73,158),(74,157),(75,156),(76,155),(77,154),(78,153),(79,152),(80,151)]])

80 conjugacy classes

class 1 2A···2G2H···2S4A···4L4M···4T5A5B10A···10N20A···20X
order12···22···24···44···45510···1020···20
size11···110···102···25···5222···24···4

80 irreducible representations

dim1111122224
type+++++++++
imageC1C2C2C2C2D5C4○D4D10D10Q82D5
kernelC22×Q82D5D5×C22×C4C22×D20C2×Q82D5Q8×C2×C10C22×Q8C2×C10C22×C4C2×Q8C22
# reps133241286248

Matrix representation of C22×Q82D5 in GL7(𝔽41)

1000000
0100000
0010000
00040000
00004000
0000010
0000001
,
40000000
0100000
0010000
0001000
0000100
0000010
0000001
,
40000000
0010000
04000000
0000100
00040000
00000400
00000040
,
1000000
0900000
00320000
00032000
0000900
00000400
00000040
,
1000000
0100000
0010000
0001000
0000100
000003540
000003640
,
40000000
04000000
0010000
0001000
00004000
00000034
00000350

G:=sub<GL(7,GF(41))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,35,36,0,0,0,0,0,40,40],[40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,35,0,0,0,0,0,34,0] >;

C22×Q82D5 in GAP, Magma, Sage, TeX

C_2^2\times Q_8\rtimes_2D_5
% in TeX

G:=Group("C2^2xQ8:2D5");
// GroupNames label

G:=SmallGroup(320,1616);
// by ID

G=gap.SmallGroup(320,1616);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,136,1684,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^4=e^5=f^2=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=f*c*f=c^-1,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽